

Approved for public release; further dissemination unlimited

Lawrence
Livermore
National
Laboratory

U.S. Department of Energy

Preprint
UCRL-JC-152873

Tool Gear: Infrastructure
for Parallel Tools

J. May, J. Gyllenhaal

This article was submitted to: 2003 International Conference on
Parallel and Distributed Processing Techniques and Applications,
Las Vegas, NV USA
6/23/03 – 06/26/03

April 17, 2003

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited
or reproduced without the permission of the author.

This work was performed under the auspices of the United States Department of Energy by the
University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

This report has been reproduced directly from the best available copy.

Available electronically at http://www.doc.gov/bridge

Available for a processing fee to U.S. Department of Energy
And its contractors in paper from

U.S. Department of Energy
Office of Scientific and Technical Information

P.O. Box 62
Oak Ridge, TN 37831-0062
Telephone: (865) 576-8401
Facsimile: (865) 576-5728

E-mail: reports@adonis.osti.gov

Available for the sale to the public from
U.S. Department of Commerce

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900

E-mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/ordering.htm

OR

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library

http://www.llnl.gov/tid/Library.html

http://www.doc.gov/bridge
mailto:reports@adonis.osti.gov
mailto:orders@ntis.fedworld.gov
http://www.ntis.gov/ordering.htm

Tool Gear: Infrastructure for Parallel Tools
John May John Gyllenhaal

Abstract— Tool Gear is a software infrastructure for developing perfor-
mance analysis and other tools. Unlike existing integrated toolkits, which
focus on providing a suite of capabilities, Tool Gear is designed to help tool
developers create new tools quickly. It combines dynamic instrumentation ca-
pabilities with an efficient database and a sophisticated and extensible graph-
ical user interface. This paper describes the design of Tool Gear and presents
examples of tools that have been built with it.

Index Terms—Parallel programming tools, performance analysis, auto-
matic instrumentation, tool infrastructure.

I. INTRODUCTION

M
ANY tools are available to help developers of parallel
programs understand the performance and correctness of

their codes. Examples include systems that show users the cost
of message-passing calls, the utilization of allocated memory, or
the computational efficiency of specific sections of a program.
Despite this variety, many more kinds of data could be collected,
and new ways could be devised for presenting it.

Researchers continue to develop new ideas for tools, but turn-
ing an idea into a usable tool can be time consuming and te-
dious. Most tool users are not satisfied with plain-text displays
or command-line interfaces. Creating sophisticated interfaces,
though, can require as much effort as building the fundamental
mechanisms for gathering and processing the data. Therefore,
tool researchers themselves need a set of tools they can use for
building new tools.

There is more to this problem than building graphical user
interfaces (GUIs): good systems for creating GUIs, such as
Tcl/Tk and Java, have existed for many years. General-purpose
GUI builders can make GUIs much easier to produce, but they
don’t help implement the underlying functionality that is com-
mon to many parallel performance tools. This functionality in-
cludes launching and controlling a target program; dynamically
instrumenting the program; collecting and organizing data in a
database; and presenting the data in useful ways, such as as-
sociating performance information with specific lines of source
code.

Individually, most of these problems have been solved be-
fore. In fact, many of them have been solved repeatedly, and
that is the main motivation for the work described in this paper.
Developers of parallel tools need a tool-building infrastructure
that provides common tool services so they don’t have to reim-
plement them for each new tool. Tool Gear is a collection of
programs and programming interfaces that are designed to meet
this need.

Wherever possible, we have used existing open-source soft-
ware. Our own contribution has been to design higher-level in-

John May (johnmay@llnl.gov), Lawrence Livermore National Laboratory,
7000 East Ave., L-561, Livermore, CA 94550.

John Gyllenhaal (gyllen@llnl.gov), same mailing address.

terfaces and to implement additional functionality. Specifically,
we have:

• Designed and implemented a general-purpose client-server
structure for program analysis tools. This software in-
cludes a server (or “Collector”) portion that controls and
instruments programs, and a Client portion that stores, an-
alyzes, and presents data.

• Developed an extensible and sophisticated user interface
that displays hierarchical views of target programs, allows
users to insert and remove instrumentation easily, and an-
notates the source code display with performance or other
data.

• Designed and implemented a program control and data col-
lection engine that tool builders can easily augment with
new types instrumentation.

Together, this software offers tool builders a straightforward
way to deveop tools with a variety of sophisticated features.
Our goal has been to simplify the implementation of the most
common features of parallel tools while offering researchers the
flexibility to gather and display many kinds of data. Because
Tool Gear source code is freely available, developers can adapt
it to meet their own needs.

It is important to distinguish between the Tool Gear infras-
tructure and the tools built with it. Although we describe the
individual tools to illustrate what can be done with Tool Gear,
the design and development the Tool Gear infrastructure is the
research focus of this paper. Throughout this paper, the terms
“Tool Gear” and “infrastructure” refer to the general-purpose
software we have developed, while “tool” refers to an individ-
ual tool built using Tool Gear.

II. RELATED WORK

Because Tool Gear aims to automate common features of par-
allel programming tools, many Tool Gear functions have ap-
peared in other tools. However, unlike most parallel program-
ming tools, the focus of this work is on the infrastructure for
gathering and presenting information, and not on the kind of in-
formation gathered or the specifics of the display. Therefore,
this section will compare Tool Gear mainly with other tool de-
velopment environments, and not with the many individual tools
and toolkits that present specific kinds of information.

Early examples of toolkits for building parallel tools in-
clude Voyeur [1] (created in 1989), PARADISE [2] (1991), and
POLKA [3] (1993). These toolkits helped automate the devel-
opment of visualizations for parallel programs. They did not
support interactive control of the program, and users had to
compile instrumentation into the target program.

One of this paper’s authors developed an extensible debugger
for parallel programs called Panorama [4]. This tool interacted

2 REPRINTED FROM: PDPTA 2003

code
Tool-specific

Communication

DatabaseDPCL

Communication

Data Files

socket

Collector

(optionally

through ssh)

Target Interface

Programming

Tool

Qt

Client

Program

Views

Fig. 1. Tool Gear’s main components: a Collector, which includes dynamic instrumentation capability, and a Client, which stores data and manages the GUI
(through Qt).

with target applications through standard command-line debug-
gers, and users could build Tcl/Tk-based views with the help of
an interface development tool.

An important advance in programming tools was the develop-
ment of the Dyninst dynamic instrumentation library [5]. Tools
based on it can insert nearly any kind of instrumentation into
an executable program at runtime. Eliminating the need for
compile-time decisions about instrumentation gives tools great
flexibility. Allowing them to insert and remove the instrumenta-
tion on the fly also helps moderate the volume of data collected.
A later tool based on Dyninst is called the Dynamic Probe Class
Library (DPCL) [6]. Developed at IBM, it is now open source,
and Tool Gear uses it extensively.

The current systems to which it is most natural to compare
Tool Gear are Paradyn [7], SvPablo [8], and TAU [9].

Paradyn presents a graphical tree-structured display of a pro-
gram and allows users to choose program locations at which
one or more predefined performance metrics can be computed.
New metrics can be defined through a Paradyn Configuration
Language.

SvPablo also uses dynamic instrumentation to gather data
from hardware performance counters for specified regions of
code. A source code viewer annotates source lines with perfor-
mance information, and data can be stored in Pablo’s extensible
data format.

TAU is a suite of graphical tools that implement function
profiling, interval timing, hardware counter monitoring, and re-
lated operations. TAU can use both dynamic instrumentation
(through Dyninst) and compiled-in (source level) instrumenta-
tion. However, users must specify instrumentation before the
target program is run; they cannot currently insert it interac-
tively.

All these tools can gather and present performance data from
parallel programs using dynamic instrumentation. All offer a
variety of data views, and all are at least somewhat extensible.
However, Tool Gear is not intended to compete with these tools.
Instead, our goal is to help tool developers create individual new
tools with minimal effort. Although developers can add new
functionality to any of these other systems, the resulting tool

would likely include all the current functionality as well, and
this functionality might be unnecessary or confusing in the new
tool. Furthermore, Tool Gear was designed from the start to
be a tool infrastructure rather than a specific tool, so it offers
a general-purpose foundation on which a wide range of tools
can be built. We want Tool Gear to be a fast and easy way for
developers to create new tools.

III. TOOL GEAR COMPONENTS

Tool Gear has two major components: a Collector and a
Client (Figure 1). The Collector controls the target program
and gathers data from it. The Client manages the graphical
user interface, accepts commands from the user, receives and
stores data from the Collector, and presents data. The Collector
and Client run as separate processes, which can run on differ-
ent computers. They communicate through a Unix socket, and
when the two components run on separate machines, the socket
is forwarded through a Secure Shell connection.

A. The Collector

The Collector runs on same computer as the target applica-
tion. It is spawned at the request of the Client, and it acts as
the Client’s proxy, executing commands and relaying data to
it. The Collector uses DPCL to control the target application,
which may be sequential or parallel. DPCL can start an appli-
cation, pause and resume it, and terminate it. DPCL can also
insert and remove instrumentation at runtime. Using a simple
DPCL instrumentation module, we have implemented a limited
form of breakpoints. (See Section V-A for details.) We call
this portion of Tool Gear the “Collector” and not the “server”
because it is a client to DPCL’s server.

The exact details of the Collector’s interaction with the Client
will of course vary between tools, but in general, the Collec-
tor will first describe to the Client the capabilities it supports
and the attributes (columns) of the database that the Client will
manage. Then it will describe the structure of the target pro-
gram, giving a list of files and functions and stating the number
of processes. As the Collector receives data from the instru-
mentation, it will forward it to the Client, which will insert it

May and Gyllenhaal: TOOL GEAR 3

#include <dpclExt.h>
#include <sys/time.h>

static struct timeval start;
void StartTimer()
{

gettimeofday(&start, NULL);
}

void StopTimer(AisPointer ais_send_handle)
{

struct timeval stop;
long sec, usec;
double result;

gettimeofday(&stop, NULL);
sec = stop.tv_sec - start.tv_sec;
usec = stop.tv_usec - start.tv_usec;
result = sec + usec / 1e6;
Ais_send(ais_send_handle, &result,

sizeof(result));
}

Fig. 2. A simple implementation of interval timer instrumentation. A more
sophisticated version (which we have implemented) would maintain thread-
specific stacks of start times so that timer calls could be nested and work cor-
rectly in multithreaded programs. The call to Ais_send transmits the result to
the Collector, which activates a user-defined callback function to process the
data.

in a database. The Collector can gather data through DPCL, or
by reading files that the target program writes, or by any other
means that the tool builder wishes to implement. Section IV
describes how the Collector gathers data from programs.

B. The Client

The Client manages the user interface, receives and stores
data, and presents graphical displays.

At the heart of the Client is a database that stores the struc-
ture of the target program, a list of actions defined by the tool
that gather data or otherwise interact with the program, and the
data itself. This database was originally written by one of this
paper’s authors for a compiler project [10]. It is well suited to
Tool Gear’s needs because it offers high-speed insertion and re-
trieval. It is not designed to manage disk-resident datasets, but
we expect that limiting data to what can fit in memory will not
be a major drawback for most tools. (Tools that generate very
large trace files would probably do best to preprocess these files
before sending the results to the Client database.)

The basic view of a target program that the Client presents
to a user is a hierarchical listing of source code. This is called
a Tree View (Figures 5 and 6 in Section V.) When the target
program first begins running, the Tree View presents a list of
the target’s source files. Clicking on a file name displays the
functions in that file, and clicking on a function name presents
a source code listing, if one is available. If no source code is
available, the Tree View displays a list of program locations that
it knows about (normally, a list of function sites.)

The database is organized as a hierarchy that matches this
display. Tools gather data and associate it with specific locations
in the source code. The Tree View then displays this data in
columns at the appropriate location. The Tree View can “roll
up” data from lines into summaries for each function and file.

It can also manage data separately for individual threads and
processes, or summarize the data in ways specified by the tool
or by the end user. Finally, the user can sort the program listing
by the values in any column of the display. This could be used,
for example, to find the code sections with the highest cache
miss rates. (See Figure 6 for another example.)

We expect that the Tree View display will be useful for a va-
riety of tools. However, we are also implementing graphical
views that tools can use to present data in other forms. Further-
more, tool designers can implement their own custom views by
programming them directly. Because data is stored centrally in
the Client, and not in any one view, the Client can notify the
views as new data arrives. This allows multiple views to update
themselves simultaneously. Also, tools can spawn new views
that show existing data in different ways.

The Client can write the contents of its database into a snap-
shot file at the user’s request. These snapshots can be read back
into a new window so the user can refer to that data as the pro-
gram continues to run. A snapshot can also be used as a base-
line for a display that shows the difference between each current
value in the database and the corresponding value in the snap-
shot file.

To create these GUI displays, we use a C++ graphical inter-
face package called Qt, developed by Trolltech. We chose Qt
over other GUI tools such as Java and Tcl/Tk because it com-
bines a rich set of features with good performance. Since we
wrote Tool Gear in C++, using Qt also avoided language in-
teroperability problems. Qt runs on a wide range of platforms,
including many Unix varieties, Windows, and Macintosh OS X.
It has a licensing option that permits free noncommercial use, so
tool developers using Tool Gear do not need to pay a Qt license
fee.

An important advantage to running the Client on a separate
computer from the Collector is that it can manage the GUI lo-
cally. The graphics updates don’t have to travel over a Secure
Shell connection, so the GUI is very responsive, even when
communicating with the Collector over low-bandwidth or en-
crypted connections.

In addition to the database and the viewers, the Client in-
cludes a Tool Programming Interface that helps tools define
what actions users can perform on the target program. Sec-
tion IV-C describes how tools use the TPI.

IV. BUILDING TOOLS

Building a tool using Tool Gear consists of three tasks:

• Writing instrumentation code that will run as part of the
target program.

• Writing code that tells the Collector about the instrumenta-
tion and how to forward the data to the Client.

• Using the Tool Programming Interface to define how the
user can interact with the program and how the Client will
display the data it receives.

The following subsections describe these steps. Our software
distribution includes extensive documentation to assist develop-
ers with this process, including recipes for building tools, ex-
ample code, and a complete set of Web pages that describe the
programming interface and all the source code.

4 REPRINTED FROM: PDPTA 2003

A. Writing Instrumentation

Tools may use Tool Gear’s dynamic instrumentation capabili-
ties to insert the instrumentation at runtime, or they may include
instrumentation libraries that are compiled and linked into the
target program.

To use dynamic instrumentation, the tool builder will write
one or more functions (usually in C or C++) that can execute
within the target program. These functions can do anything that
a function written as part of the target can do, but they are com-
piled separately and they do not need to be linked into the tar-
get program. Instead, the instrumentation functions for a tool
are compiled into a separate probe module. Figure 2 shows a
simple example of instrumentation that implements an interval
timer. The Tool Gear documentation describes how this would
be compiled into a probe module.

To send data from the target program to the Collector, the
probe module functions use DPCL’s Ais_send function. This
function transmits an arbitrary-size block of data to the Col-
lector. The collector invokes a callback function to handle this
data, as described in Section IV-B.1.

When a tool uses static instrumentation, tool developer must
arrange for the Collector to receive the data. The easiest way to
do this is for the instrumentation to write a file, which the Col-
lector reads at the appropriate time. For example, the Collector
can be programmed to call a function that reads a file after the
target program exits. Section IV-B.2 describes this technique.

B. Modifying the Collector

The second step in building a tool is to modify Tool Gear’s
basic Collector program to gather and process data. How this
is done will depend on whether the tool uses dynamic or static
instrumentation.

B.1 Dynamic Instrumentation

When the tool uses dynamic instrumentation, the Collector’s
job is to cause DPCL to install specific functions from the probe
module at program locations chosen by the end user. The cur-
rent version of DPCL can install instrumentation only at specific
locations in the target program: function entry and exit points,
and just before or after any function call. These locations are
called instrumentation points, and instrumentation that DPCL
installs at one of these points is called a point probe. DPCL can
also cause instrumentation to be executed at specified time in-
tervals (this is called a phase probe) or exactly once (a one-shot
probe.)

Tool Gear defines a set of C++ classes to encapsulate these
ideas. An action type represents an instrumentation function,
and a point action represents an action type that has been in-
stalled at a specific instrumentation point. The same action type
can be installed at multiple instrumentation points, and a single
instrumentation point can accept multiple point probes. Tool
Gear also defines classes for phase probes and one-shot probes.

When defining an action type, the tool developer can spec-
ify the callback function that will be invoked whenever the
corresponding instrumentation function transmits data through
Ais_send. For point probes, the callback can determine the in-
strumentation point at which the function was called, so it can

associate data with a particular program location.

The main steps for modifying a Collector to use the new in-
strumentation are these:

• Instantiate a set of action types.
• Define the data attributes in the Client database. This in-

cludes naming the columns in the database and specifying
their types. Tool Gear includes functions for doing this
from the Collector.

• Define the callback functions that will receive the data from
the target program and forward it to the Client database.

All of this can be done in a file that is linked to the Collec-
tor, and the Collector’s main function can call an initialization
function in this file to set up all the actions. (We have consid-
ered designing the Collector to dynamically load the code that
defines a tool’s features, but we prefer to avoid the complex-
ity and portability problems that this approach would entail.) A
Collector can link in and call multiple sets of action initializa-
tion functions. This allows a tool builder to incorporate some
standard action types, such as breakpoints and interval timers,
along with the tool-specific action types.

The Collector already includes the ability to find the instru-
mentation points in a program, report them to the Client, and
instantiate point actions at the Client’s request. It can also in-
stantiate point actions for a set of instrumentation points that
match a pattern chosen by the user or the tool builder (such as,
“entry to all functions whose names start with MPI_”).

B.2 Static Instrumentation

Tools that rely on instrumentation that is compiled or linked
directly into an application do not need to declare action types,
but they do need to declare Client database attributes, and they
also need to define at least one callback.

When the tool initializes itself in the Collector, it declares the
attributes in the usual way, and then instead of defining action
types and corresponding callbacks, it declares a single callback
that the Collector will execute when the target program termi-
nates. This routine can read a file that the program’s instrumen-
tation has written and forward the data it collects to the Client
using Tool Gear’s standard functions.

The instrumentation can choose a unique name for the file
based on the program name and Unix process id. This informa-
tion is also available to the Collector, so it can easily find the
relevant file. For parallel programs, the instrumentation may
write all the data to a single file, or it may write one file per
process.

Tools that use dynamic instrumentation can easily determine
what part of a program generated a piece of data. This allows
the Collector to tell the Client database how to associate data
with a program’s source code. Tools that do not use dynamic
instrumentation must find another way to associate data with
program locations. One method is for the instrumentation to
decode the target program’s symbol table information so that it
can look up file, function, and line number information based
on the program counter. GNU libraries are available to help
applications do this.

May and Gyllenhaal: TOOL GEAR 5

Insert "Start Timer" Remove "Start Timer"

Fig. 3. Tool developers define state diagrams for each action using the Tool
Programming Interface. Along with the basic states and transitions, developers
specify corresponding icons and menu text.

Insert "Start Timer"

Insert "Start Timer"

Remove "Start Timer"

Remove "Start Timer"

requested

confirmed

requested

confirmed

Fig. 4. Tool Gear expands the basic state diagram that the tool developer de-
clares to include transitional states. End users can initiate only those transitions
indicated by solid arrows, while the Collector can normally initiate only the
transitions indicated by dashed lines. In error conditions, the Client or Collec-
tor can force the system into any state.

C. Creating the User Interface

The final step in defining a tool is to specify how the user will
request actions and how data will be displayed.

C.1 Requesting Actions

Tool builders specify how to request actions through the Tool
Programming Interface. Our model for user interactions with
target programs is that each tool defines one or more actions
that the user can request, and each request is associated with a
location in the target program. (The “program locations” in the
Client typically represent DPCL instrumentation points. We use
separate terms to distinguish the objects that DPCL defines and
manipulates on the target computer from those that the Client
uses to represent them.) Examples of actions include inserting
(or removing) some instrumentation or setting a breakpoint.

When a tool runs, tool-specific software makes calls to the
Tool Programming Interface to define a set of actions, along
with associated icons, menu entries, and help text. The tool
also defines how actions relate to each other by defining a state
transition graph (see Figure 3.) The tool uses this graph for all
the program locations (or a subset of them, depending on the
tool), but the Client maintains separate states for each location.
The current state for a program location determines what icon
is displayed, what menu choices are available to the user, and
what help text is displayed when the cursor passes over an icon.
The tool also defines a default initial state.

Tool Gear can automatically expand the graph that the tool
defines to differentiate between requested actions and confirmed
actions. It also defines additional transitions between the new
states (Figure 4.) Expanding the state diagram allows the dis-
play to show different icons for requested and confirmed ac-

tions, so the user can see when a pending action has been com-
pleted. As Figure 4 shows, users can only initiate requests,
while the Collector normally only confirms them. Our model
for using these state transition graphs to control the interactions
between the user and the collector is described more fully in a
Tool Gear technical report [11].

A tool may support several independent groups of ac-
tions (such as inserting/removing instrumentation and set-
ting/deleting breakpoints). The state diagrams that the tool de-
fines for these groups of actions need not be connected. Thus,
a program location can be in several independent states at the
same time, reflecting the status of independent actions. The
GUI automatically displays icons for independent states next
to each other and builds the menus appropriately. For exam-
ple, if the “Start Timer” action had been inserted at a particular
location, clicking on that location might bring up a menu with
the options of removing the “Start Timer” action, requesting a
“Stop Timer” action, and requesting a breakpoint.

C.2 Using the Database

The second task in defining a user interface is determin-
ing how data will be stored and displayed. When the Collec-
tor starts, tool-specific initialization code sends requests to the
Client to define one or more columns in the database, as men-
tioned earlier. The Client then automatically creates and labels
these columns in the Tree View. Later, when the Collector re-
ceives data from the target program, it forwards it to the Client
with information describing the row and column where it should
be stored in the database. New values for a given cell can either
replace existing ones or be added to them.

For parallel programs, the database stores data for a given
row and column separately for each thread or process. The
Tree View display presents a single value for a cell, which can
be (at the user’s choice) the sum, mean, minimum, maximum,
standard deviation, or count of the values for that row and col-
umn. The tool can specify which of these summary values is
displayed by default for each column. Placing the cursor over a
value shows all the summary data in a line at the bottom of the
window.

The Tree View further summarizes data in each column by
displaying any one of the statistics mentioned above for the
function, file, and program. This could show, for example, the
total time for all functions that were instrumented in a program.
Again, the user can select which type of summary to display.
The Client computes all these values on the fly as data arrives
in the database, so there is no delay when the user chooses dif-
ferent values to display.

V. TOOLS BUILT WITH TOOL GEAR

We have built two prototype tools using the Tool Gear in-
frastructure. The first, called TGmpx, displays cache utilization
and FLOP data for selected sections of code (Figure 5.) It uses
dynamic instrumentation. The second, called TGmpip, shows
the cost of certain MPI calls. It uses instrumentation linked in
through MPI’s standard profiling interface.

6 REPRINTED FROM: PDPTA 2003

Fig. 5. TGmpx shows cache utilization and FLOP rates for three function calls in a parallel program. The calls were instrumented at runtime, and resulting data
is shown on the corresponding source lines. A statistical summary of the cell under the cursor appears at the bottom of the display. This screen shot, taken from a
Macintosh OS X computer, does not show the main menus. These appear at the top of the screen on a Mac and at the top of the window on other platforms.

Fig. 6. TGmpip shows the cost of MPI communications. The user has sorted the display by the Mean time column (highlighted), so the source lines with data
in that column have been pulled out of the rest of the code and arranged in increasing order. The top three lines show the sum of the data in each column for the
program, file, and function. The program has only one function, so all three are the same here. Unlike Figure 5, the cursor here is pointing at an empty cell, so the
the bottom line shows the file, function, and line where the cursor is pointing.

A. TGmpx

TGmpx gathers hardware performance counter data using the
the MPX library [12]. On systems whose counter architecture
would otherwise prevent concurrent counting of certain combi-
nations of events, MPX uses time sharing to sample counters
and extrapolate results.

For TGmpx, we defined functions to gather specific combi-
nations of data, and we turned these into DPCL probe modules.
We defined two action types: one to start the measurement, and
one to stop it and report the results. Starting the counters re-
quires no callback function in the Collector. Stopping the coun-
ters invokes a callback in the Collector that simply forwards the
data values (cache hit rate, FLOP count, and FLOP rate) back
to the Client, along with a tag that identifies the instrumenta-
tion point where the callback was invoked and a process/thread
identifier.

This tool also has an action type to implement simple break-

points. When the user sets a breakpoint, DPCL installs a func-
tion in the target that sends an empty message back to the Col-
lector and then puts the process to sleep for a short time. When
the callback in the Collector receives this message, it tells DPCL
to pause the program’s execution. The sleep call in the instru-
mentation function gives the Collector time to receive the mes-
sage and call DPCL before the program continues to the next
instruction.

Figure 5 shows data for an eight-process parallel program.
The tool also works for sequential programs and multithreaded
programs.

All of the display capability is built into the Tool Gear infras-
tructure. This includes not only the features described so far but
also the ability to search in the source code, customizable tool
tips that present help text for various elements of the display,
and a programmable “About...” box. The parts of the user inter-
face that are unique to TGmpx are the icons, the menu text (not
shown here), and the column labels.

May and Gyllenhaal: TOOL GEAR 7

B. TGmpip

TGmpip displays data generated by mpiP [13], a tool that
instruments MPI calls and writes out a summary file describing
how much time certain calls took to complete. It helps users
find the communication calls in their codes that are taking a
disproportionate amount of time.

This tool relies on linked-in instrumentation, so it does not
need any action type declarations. Instead, we simply use DPCL
to run the program. When the target finishes execution, the Col-
lector invokes a callback to find and read the output file (whose
name is based on the executable name, the number of processes,
and the process id—all information that is available within the
Collector). This file lists call sites for each instrumented MPI
function, and for each function, there is a per-process listing
of the number of times the function was called; the minimum,
maximum, and mean execution time; and the percentage of time
this MPI call accounts for in the total communication time and
total application running time.

The tool-specific callback function culls this information
from the file and transmits the per-call information to the Client
for display (Figure 6).

Because this tool outputs no data until the program has fin-
ished running, there is no need for breakpoints or dynamic in-
strumentation. Therefore, we initially considered implement-
ing a Collector for this tool that didn’t use DPCL. However,
we quickly realized that the new Collector would still need to
start the parallel program, detect when it had finished execut-
ing, identify the processes, and serve source code to the Client.
All of this is certainly feasible, but we decided it would be sim-
pler to take advantage of the functionality that already exists in
DPCL and not write a new version of the Collector that didn’t
use it. As a result, the tool-independent part of the TGmpip
Collector is the same as what TGmpx uses. The disadvantage
of this approach that it limits the Collector to running on sys-
tems where DPCL is available, currently IBM and Linux.

C. Tool Development Time

One of our main goals for Tool Gear is to simplify the de-
velopment process so that ideas can be transformed rapidly into
working, usable tools. Although the ease of implementing a tool
with Tool Gear is difficult to quantify, the time needed to build
a tool is a reasonable measure of our success.

Because TGmpx was developed concurrently with Tool Gear
itself, it is difficult to estimate how long it would have taken to
build TGmpx on top of the existing Tool Gear infrastructure.

For TGmpip, we needed to extend the Tool Gear infrastruc-
ture somewhat to handle data from static instrumentation. This
took about a week, starting from the existing Tool Gear infras-
tructure and the stand-alone text-based tool that gathers the data.

Perhaps the best indication of how long it takes to create a
new tool with Tool Gear is our experience with the interval
timer tool. This tool simply measures and reports the elapsed
time from a Start Timer call to a Stop Timer call. Users insert
these calls using the standard dynamic instrumentation model
we have described. A simplified version of the source code for
the instrumentation appears in Figure 2. Implementing this tool
took about half a day and required no changes to the infrastruc-

ture. The process closely followed the steps we have outlined in
this paper.

VI. CURRENT STATUS AND FUTURE WORK

Source code for Tool Gear and the sample tools
TGmpx and TGmpip are currently available free of charge
from http://www.llnl.gov/CASC/tool_gear/
download/tool_gear_agree.html. DPCL currently
runs only on IBM and Linux systems, and the Linux port is
experimental. However, IBM has released this code as open
source, and the Dyninst technology on which it is based has
been ported to many platforms. The Client, on the other hand,
is already quite portable. It has been tested on IBM, Solaris,
Linux, and Macintosh OS X workstations.

As other developers begin to build tools with Tool Gear, we
will need to refine and extend the programming interfaces and
add new functionality, especially for displaying data in different
ways.

With Tool Gear’s flexibility, ease of use, and sophisticated
interface features, we believe it has an exciting future as a foun-
dation on which many useful new tools can be built.

ACKNOWLEDGMENT

This work was performed under the auspices of the U.S. De-
partment of Energy by University of California Lawrence Liver-
more National Laboratory under contract number W-7405-Eng-
48. UCRL-JC-XXXXXX.

REFERENCES

[1] David Socha, Mary L. Bailey, and David Notkin, “Voyeur: Graphical
views of parallel programs,” Proceedings of the ACM SIGPLAN/SIGOPS
Workshop on Parallel and Distributed Debugging, published in ACM SIG-
PLAN NOTICES, vol. 24, no. 1, pp. 206–215, January 1989.

[2] James Arthur Kohl and Thomas Casavant, “Use of PARADISE: A meta-
tool for visualizing parallel systems,” in Proceedings of the Fifth Interna-
tional Parallel Processing Symposium, 1991, pp. 561–567.

[3] John T. Stasko and Eileen Kraemer, “A methodology for building
application-specific visualizations of parallel programs,” Journal of Par-
allel and Distributed Computing, vol. 18, no. 2, pp. 258–264, June 1993.

[4] John May and Francine Berman, “Retargetability and extensibility in a
parallel debugger,” Journal of Parallel and Distributed Computing, vol.
35, no. 2, pp. 142–155, June 1996.

[5] Jeffrey K. Hollingsworth, Barton P. Miller, and Jon Cargille, “Dynamic
program instrumentation for scalable peformance tools,” in Proceedings
of the Scalable High Performance Computing Conference, May 1994, pp.
841–850.

[6] Luiz DeRose, Ted Hoover Jr., and Jeffrey K. Hollingsworth, “The Dy-
namic Probe Class Library—An infrastructure for developing instrumen-
tation for performance tools,” in Proceedings 15th International Parallel
and Distributed Processing Symposium, April 2001.

[7] Barton P. Miller, Mark D. Callaghan, Johathan M. Cargille, Jeffrey K.
Hollingsworth, R. Bruce Irvin, Karen L. Karavanic, Krishna Kunchitha-
padam, and Tia Newhall, “The Paradyn parallel performance measure-
ment tools,” IEEE Computer, vol. 28, no. 11, pp. 37–46, November 1995.

[8] Luiz DeRose and Daniel A. Reed, “SvPablo: A multi-language
architecture-independent performance analysis system,” in Proceedings
of the International Conference on Parallel Processing, September 1999.

[9] Bernd Mohr, Darryl Brown, and Allen Maloney, “TAU: A portable
parallel program analysis environment for pC++,” in Proceedings of
CONPAR94—VAPP VI, September 1994, pp. 29–40.

[10] John C. Gyllenhaal, W. W. Hwu, and B. Ramakrishna Rau, “HMDES
version 2 specification,” Tech. Rep. IMPACT-96-03, University of Illinois,
Urbana, Illinois, 1996, http://www.crhc.uiuc.edu/~gyllen/.

[11] John May and John Gyllenhaal, “Tool Gear: Infrastructure for building
parallel programming tools,” Tech. Rep. UCRL-JC-147901, Lawrence
Livermore National Laboratory, Livermore, California, 2002.

8 REPRINTED FROM: PDPTA 2003

[12] John M. May, “MPX: Software for multiplexing hardware performance
counters in multithreaded programs,” in Proceedings 15th International
Parallel and Distributed Processing Symposium, April 2001.

[13] Jeffrey S. Vetter and Michael O. McCracken, “Statistical scalability anal-
ysis of communication operations in distributed applications,” in Eighth
ACM SIGPLAN Symposium on Principles and Practices of Parallel Pro-
gramming, June 2001.

	Untitled.pdf
	DISCLAIMER

